Progressive Delivery and Blue-Green Deployment using

- Ninad Desai (Sr. Site Reliability Engineer)



https://github.com/argoproj/argo-rollouts

Argo Projects

https://github.com/argoproj/argoproj

- Container-native Workflow Engine
- Declarative GitOps Continuous Delivery
- Event-based Dependency Manager

- Progressive Delivery with support for Canary and Blue Green
deployment strategies

- separate GitHub org that is setup for community contributions related to
the Argoproj ecosystem


https://github.com/argoproj/argo-workflows
https://github.com/argoproj/argo-cd
https://github.com/argoproj/argo-events
https://github.com/argoproj/argo-rollouts
https://github.com/argoproj-labs
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Progressive Delivery

“Art of moving fast but with control”

everyone

staged rollouts

beta

Image Source: optimizely.com


https://www.optimizely.com/optimization-glossary/progressive-delivery

Rolling update strategy in
Kubernetes Deployments

default RollingUpdate Strategy of Kubernetes deployments

Need of rolling update strategy
- To implement Reliable Zero Downtime Upgrades with Gradual update
The way rolling update strategy works
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Why Argo Rollouts?

Limitations with default RollingUpdate Strategy of Kubernetes deployments

Few controls over the speed of the rollout

Inability to control traffic flow to the new version

Readiness probes are unsuitable for deeper, stress, or one-time checks

No ability to query external metrics to verify an update

Can halt the progression, but unable to automatically abort and rollback the
update



Argo Rollouts

https://github.com/argoproj/argo-rollouts

*  Argo Rollouts is a Kubernetes controller and set of CRDs

< Provide deployment capabilities such as blue-green, canary, canary

analysis, experimentation, and progressive delivery features to
Kubernetes

% Drop in replacement for the Kubernetes Deployment


https://kubernetes.io/docs/concepts/architecture/controller/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

Some use cases of Argo
Rollouts

To run last-minute functional tests on the new version before it starts to
serve production traffic

To determine if the new version is performant compared to the old version

To control the percentages of traffic, user want the new version to receive
and the amount of time to wait between percentages, before directing
whole traffic to the new version



How it works?

a Rollout Controller
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https://argoproj.github.io/argo-rollouts/architecture/

Argo Rollout Installation

kubectl create namespace argo-rollouts

kubectl apply -n argo-rollouts -f https://github.com/argoproj/argo-rollouts/releases/latest/download/insta B
11.yaml

Check whether Argo rollout is up and running

b kubectl get pods -n argo-rollouts | )




Argo Rollout Ul

(run kubectl argo rollouts dashboard and then visit: Iocalhost:3100)
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Rollout Spec details

: argoproj.io/vlalphal
Rollout

canary-service

: example-rollout-canary
stable-service

1 service-name
: guestbook-svc.default.svc.cluster.local

ive-service

1 preview-service

! success-rate { success-rate

service-name
guestbook-svc.default.svc.cluster. local
1 primary-ingress
: customingress.nginx.ingress.kubernetes.io

: X-Canary
i iwantsit



https://argoproj.github.io/argo-rollouts/features/specification/
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https://argoproj.github.io/argo-rollouts/concepts

Rollout Spec - Blue Green

i argoproj.1o/vlatlpnal

: Rollout

: rollout-bluegreen

g rollout—bluegreeﬂ

rollout-bluegreen

: rollouts—demo
: argoproj/rollouts-demo:blue
¢ Always

: 8080

rollout-bluegreen-active

rollout-bluegreen-preview




Hands-On lab for Blue-Green Roll out strategy

memegenerator.net



Pro’s and Con’s - Blue Green deployment strategy

Pro’s:
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Clients get API consistency
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Preview stack can be tested before
receiving production traffic

7/
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Rollbacks/Aborts are immediate

2x resource costs during updates
Cannot canary
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Thank you!



