
Progressive Delivery and Blue-Green Deployment using
Argo Rollouts

- Ninad Desai (Sr. Site Reliability Engineer)
@InfraCloud(Weʼre hiring!)

https://github.com/argoproj/argo-rollouts

https://github.com/argoproj/argoproj

❖ Argo Workflows - Container-native Workflow Engine
❖ Argo CD - Declarative GitOps Continuous Delivery
❖ Argo Events - Event-based Dependency Manager
❖ Argo Rollouts - Progressive Delivery with support for Canary and Blue Green

 deployment strategies

❖ Argoproj-labs - separate GitHub org that is setup for community contributions related to
the Argoproj ecosystem

Argo Projects

https://github.com/argoproj/argo-workflows
https://github.com/argoproj/argo-cd
https://github.com/argoproj/argo-events
https://github.com/argoproj/argo-rollouts
https://github.com/argoproj-labs

Agenda for Argo Rollout
Series:

❖ Progressive Delivery
❖ Why Argo Rollouts?
❖ Intro of project
❖ How it works?
❖ Argo Rollout Installation
❖ Walkthrough of UI, use cases etc.
❖ Rollout Spec intro
❖ Rollout Spec - Blue Green

❖ Rollout Spec - Canary
❖ Rollout Spec - Analysis Template
❖ Rollout Spec - Canary+ Analysis
❖ (In all scenarios above - walk through YAML as well

as some UI)
❖ Experiment Brief
❖ Migrating existing Deployments/Helm charts to Argo

Rollout

 “Art of moving fast but with control”

Progressive Delivery

Image Source: optimizely.com

https://www.optimizely.com/optimization-glossary/progressive-delivery

default RollingUpdate Strategy of Kubernetes deployments

❖ Need of rolling update strategy
- To implement Reliable Zero Downtime Upgrades with Gradual update

❖ The way rolling update strategy works

Rolling update strategy in
Kubernetes Deployments

default RollingUpdate Strategy of Kubernetes deployments

❖ Need of rolling update strategy
- To implement Reliable Zero Downtime Upgrades with Gradual update

❖ The way rolling update strategy works

Rolling update strategy in
Kubernetes Deployments

default RollingUpdate Strategy of Kubernetes deployments

❖ Need of rolling update strategy
- To implement Reliable Zero Downtime Upgrades with Gradual update

❖ The way rolling update strategy works

Rolling update strategy in
Kubernetes Deployments

default RollingUpdate Strategy of Kubernetes deployments

❖ Need of rolling update strategy
- To implement Reliable Zero Downtime Upgrades with Gradual update

❖ The way rolling update strategy works

Rolling update strategy in
Kubernetes Deployments

default RollingUpdate Strategy of Kubernetes deployments

❖ Need of rolling update strategy
- To implement Reliable Zero Downtime Upgrades with Gradual update

❖ The way rolling update strategy works

Rolling update strategy in
Kubernetes Deployments

default RollingUpdate Strategy of Kubernetes deployments

❖ Need of rolling update strategy
- To implement Reliable Zero Downtime Upgrades with Gradual update

❖ The way rolling update strategy works

Rolling update strategy in
Kubernetes Deployments

Limitations with default RollingUpdate Strategy of Kubernetes deployments

❖ Few controls over the speed of the rollout
❖ Inability to control traffic flow to the new version
❖ Readiness probes are unsuitable for deeper, stress, or one-time checks
❖ No ability to query external metrics to verify an update
❖ Can halt the progression, but unable to automatically abort and rollback the

update

Why Argo Rollouts?

https://github.com/argoproj/argo-rollouts

❖ Argo Rollouts is a Kubernetes controller and set of CRDs

❖ Provide deployment capabilities such as blue-green, canary, canary
analysis, experimentation, and progressive delivery features to
Kubernetes

❖ Drop in replacement for the Kubernetes Deployment

Argo Rollouts

https://kubernetes.io/docs/concepts/architecture/controller/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

❖ To run last-minute functional tests on the new version before it starts to
serve production traffic

❖ To determine if the new version is performant compared to the old version

❖ To control the percentages of traffic, user want the new version to receive
and the amount of time to wait between percentages, before directing
whole traffic to the new version

 Some use cases of Argo
Rollouts

How it works?

Image Source https://argoproj.github.io/argo-rollouts/architecture/

https://argoproj.github.io/argo-rollouts/architecture/

Argo Rollout Installation

 (run kubectl argo rollouts dashboard and then visit: localhost:3100)

Argo Rollout UI

(https://argoproj.github.io/argo-rollouts/features/specification/)

Rollout Spec details

https://argoproj.github.io/argo-rollouts/features/specification/

Blue-Green Rollout concept

Image Source https://argoproj.github.io/argo-rollouts/concepts

https://argoproj.github.io/argo-rollouts/concepts

Rollout Spec - Blue Green

Hands-On lab for Blue-Green Roll out strategy

Pro’s and Con’s - Blue Green deployment strategy

Pro’s:
❖ Clients get API consistency
❖ Preview stack can be tested before

receiving production traffic
❖ Rollbacks/Aborts are immediate

Con’s:
❖ 2x resource costs during updates
❖ Cannot canary

Thank you!

