Progressive Delivery and Blue-Green Deployment using

- Ninad Desai (Sr. Site Reliability Engineer)

https://github.com/argoproj/argo-rollouts

Argo Projects

https://github.com/argoproj/argoproj

- Container-native Workflow Engine
- Declarative GitOps Continuous Delivery
- Event-based Dependency Manager

- Progressive Delivery with support for Canary and Blue Green
deployment strategies

- separate GitHub org that is setup for community contributions related to
the Argoproj ecosystem

https://github.com/argoproj/argo-workflows
https://github.com/argoproj/argo-cd
https://github.com/argoproj/argo-events
https://github.com/argoproj/argo-rollouts
https://github.com/argoproj-labs

Agenda for Argo Rollout

Progressive Delivery
Why Argo Rollouts?
Intro of project

How it works?

Argo Rollout Installation

Walkthrough of Ul, use cases etc.

Rollout Spec intro
Rollout Spec - Blue Green

Series:

Rollout Spec - Canary

Rollout Spec - Analysis Template

Rollout Spec - Canary+ Analysis

(In all scenarios above - walk through YAML as well
as some Ul)

Experiment Brief

Migrating existing Deployments/Helm charts to Argo
Rollout

Progressive Delivery

“Art of moving fast but with control”

everyone

staged rollouts

beta

Image Source: optimizely.com

https://www.optimizely.com/optimization-glossary/progressive-delivery

Rolling update strategy in
Kubernetes Deployments

default RollingUpdate Strategy of Kubernetes deployments

Need of rolling update strategy
- To implement Reliable Zero Downtime Upgrades with Gradual update
The way rolling update strategy works

. @ N B
ooanens | epicaset | o @] [0 @ [0 @
d o .) A)

Rolling update strategy in
Kubernetes Deployments

default RollingUpdate Strategy of Kubernetes deployments

Need of rolling update strategy
- To implement Reliable Zero Downtime Upgrades with Gradual update
The way rolling update strategy works

Vs >
aa B A B (
Deployment Replica Set | | Pod QJ Pod QW Pod QW
@ "o —
\e. .
p >
Replica Set

Rolling update strategy in
Kubernetes Deployments

default RollingUpdate Strategy of Kubernetes deployments

Need of rolling update strategy
- To implement Reliable Zero Downtime Upgrades with Gradual update
The way rolling update strategy works

a N
@ o B B
Deployment Replica Set Pod Q ’ LPod ’ (Pod QJ
@ "o | =%
- P
e N
Replica Set — @
NS i .

Health Check

Rolling update strategy in
Kubernetes Deployments

default RollingUpdate Strategy of Kubernetes deployments

% Need of rolling update strategy
- To implement Reliable Zero Downtime Upgrades with Gradual update
<% The way rolling update strategy works

Ve)
& | e 29 ~ 0 ~ 0
@ _ J
2 N\

Replica Set

Rolling update strategy in
Kubernetes Deployments

default RollingUpdate Strategy of Kubernetes deployments

% Need of rolling update strategy
- To implement Reliable Zero Downtime Upgrades with Gradual update
<% The way rolling update strategy works

4 I
ime"t Replica Set Pod Q Pod @J
H | B
4 N
Replica Set

Rolling update strategy in
Kubernetes Deployments

default RollingUpdate Strategy of Kubernetes deployments

% Need of rolling update strategy
- To implement Reliable Zero Downtime Upgrades with Gradual update
<% The way rolling update strategy works

p R
Replica Set
@ @ L .
2 £\
Replica Set

Why Argo Rollouts?

Limitations with default RollingUpdate Strategy of Kubernetes deployments

Few controls over the speed of the rollout

Inability to control traffic flow to the new version

Readiness probes are unsuitable for deeper, stress, or one-time checks

No ability to query external metrics to verify an update

Can halt the progression, but unable to automatically abort and rollback the
update

Argo Rollouts

https://github.com/argoproj/argo-rollouts

* Argo Rollouts is a Kubernetes controller and set of CRDs

< Provide deployment capabilities such as blue-green, canary, canary

analysis, experimentation, and progressive delivery features to
Kubernetes

% Drop in replacement for the Kubernetes Deployment

https://kubernetes.io/docs/concepts/architecture/controller/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

Some use cases of Argo
Rollouts

To run last-minute functional tests on the new version before it starts to
serve production traffic

To determine if the new version is performant compared to the old version

To control the percentages of traffic, user want the new version to receive
and the amount of time to wait between percentages, before directing
whole traffic to the new version

How it works?

a Rollout Controller

.....

i/l\l/l AnalysisTemplate

'I/I\I/I' AnalysisRun

.’--_’

8 Ingress }---» 6 Service

20%

Canary ReplicaSet

e Canary Pod

80%

Y

Stable ReplicaSet

1

1

1

e Stable Pod

Image Source https://argoproj.qithub.io/argo-rollouts/architecture/

9 Prometheus

!l! Wavefront

Kayenta

@ K8s Job
Y,
N

www Web

A

https://argoproj.github.io/argo-rollouts/architecture/

Argo Rollout Installation

kubectl create namespace argo-rollouts

kubectl apply -n argo-rollouts -f https://github.com/argoproj/argo-rollouts/releases/latest/download/insta B
11.yaml

Check whether Argo rollout is up and running

b kubectl get pods -n argo-rollouts |)

Argo Rollout Ul

(run kubectl argo rollouts dashboard and then visit: Iocalhost:3100)

[CIGIEEINGE v1.0.0+75eeb71.dirty

Search...
bluegreen-demo Cc canary-demo c rollouts-demo (o
Strategy Strategy % Canary Strategy % Canary
Weight & 20 Weight 80
bluegreen-demo-6cbccd9fo9 Revision 1
canary-demo-68f96454b6 Revision 9 rollouts-demo-7bf84f9696 Revision 5

 RESTART © PROMOTE-FULL
canary-demo-645d5dbc4c Revision 6 rollouts-demo-789746c88d Revision 4

& RESTART © PROMOTE-FULL @ © PROMOTE-FULL

Rollout Spec details

: argoproj.io/vlalphal
Rollout

canary-service

: example-rollout-canary
stable-service

1 service-name
: guestbook-svc.default.svc.cluster.local

ive-service

1 preview-service

! success-rate { success-rate

service-name
guestbook-svc.default.svc.cluster. local
1 primary-ingress
: customingress.nginx.ingress.kubernetes.io

: X-Canary
i iwantsit

https://argoproj.github.io/argo-rollouts/features/specification/

I INITIAL VERSION

Live traffic

Live traffic

s

Blue-Green Rollout concept

2 NEW VERSION DEPLOYED

[] Live traffic /'
229 -
Load Application " . . Balancer
Balancer > Version 34 A

Users

4 FINISH
Application
Version 34
2 . 1 Live traffic
Load e Load
Balancer —_—_ Application 1 " /= e
Version 35

Image Source https://argoproj.github.io/argo-rollouts/concepts

—

Application
Version 34
Application
Version 35

Application
Version 35

https://argoproj.github.io/argo-rollouts/concepts

Rollout Spec - Blue Green

i argoproj.1o/vlatlpnal

: Rollout

: rollout-bluegreen

g rollout—bluegreeﬂ

rollout-bluegreen

: rollouts—demo
: argoproj/rollouts-demo:blue
¢ Always

: 8080

rollout-bluegreen-active

rollout-bluegreen-preview

Hands-On lab for Blue-Green Roll out strategy

memegenerator.net

Pro’s and Con’s - Blue Green deployment strategy

Pro’s:

K/
0‘0

Clients get API consistency

)/
0'0

Preview stack can be tested before
receiving production traffic

7/
0‘0

Rollbacks/Aborts are immediate

2x resource costs during updates
Cannot canary

i Qrgo

Thank you!

